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Abstract

In this paper, 2-D hp adaptive procedure is developed based on Control Volume Isogeomet-

ric Analysis (CV-IGA) and Hierarchical Fup (HF) basis functions. Contrary to the most

common truncated hierarchical splines, HF enables hp adaptation because higher resolution

levels do not include only basis with smaller compact support or higher frequencies, but also

with higher order. Consequence of this property is spectral convergence of the proposed

adaptive algorithm which is presented on classical benchmarks such as L-shape benchmark

and advection dominated problems. Even in non-smooth problems, spectral convergence is

achieved contrary to the application of uniform grid. CV-IGA ensures local and global mass

conservation which is potentially very important for fluid mechanics problems. 2-D proposed

algorithm chooses regular control volumes in parametric space at all resolution levels closely

related to the Greville points (vertices) of basis functions. Therefore, methodology is very

simple requiring only overlapping of control volumes in the areas where different levels are

connected, while its computational cost lies between Galerkin and collocation formulations.

Keywords: Hierarchical Fup Basis Functions, hp-refinement, Local Refinement, Control

Volume, Isogeometric Analysis, Adaptive Methods

Contents

1 Introduction 2

2 Spline basis functions 5

2.1 Hierarchical B-spline basis functions . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Hierarchical Fup basis functions . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Adaptive methodology 15

3.1 Control volume isogeometric analysis . . . . . . . . . . . . . . . . . . . . . . 15

Preprint submitted to Computer Methods in Applied Mechanics and Engineering October 29, 2021



3.2 2-D basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Selection of control volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Adaptive strategy for the function approximation . . . . . . . . . . . . . . . 24

3.5 Boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Numerical examples 27

4.1 Aim of the numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Verification tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Function approximation . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.3 Heat equation (Laplace) . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.4 Advection-dispersion equation . . . . . . . . . . . . . . . . . . . . . . 37

5 Conclusions 41

1. Introduction1

Many industrial and real applicative problems in computational mechanics have been2

solved by numerical simulations that require large computational resources including parallel3

computing and the use of CPU/GPU clusters and/or supercomputers. Therefore, it is of4

great importance that computer resources are used as efficiently as possible.5

Numerical modeling of different physical and engineering problems characterized with6

large range of spatial and temporal scales are typically faced by many difficulties. Many7

different numerical approaches and methods have been proposed in recent decades. In8

general, each method has its advantages, but also disadvantages, and none can be singled9

out as the best for all problems. The classical methods are finite element method (FEM),10

finite difference method (FDM) and finite volume method (FVM) [1, 2, 3, 4, 5, 6, 7, 8, 9].11

There are various other methods such as the spectral element method (SEM), boundary12

element method (BEM) [10], discrete element method (DEM) [11] which, together with13

various collocation, meshfree and other hybrid approaches, are usually practical for limited14

classes of problems.15

The gap between computer-aided design (CAD) for the geometry description on the one16

hand and finite element analysis (FEA) for the solution description on the other hand has17

been long evident, and mostly present due to differences in the used interpolation (basis)18

functions. Whereas classical polynomials have dominated in the field of numerical analysis,19

spline-based basis functions (e.g., B-splines, non-uniform rational B-splines (NURBS) [12],20
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T-splines [13], hierarchical B-splines (HB) [14] etc.) play a crucial role in the field of compu-21

tational geometry. True popularity of spline functions for numerical analysis was achieved22

by the introduction of the concept of isogeometric analysis (Hughes et al. [12] and Cottrell23

et al. [15]). The main idea of isogeometric analysis (IGA) is to bridge the gap between FEA24

and a CAD by using the same type of spline basis functions for both systems. Therefore,25

IGA allows accurate representation of geometry in CAD terms in contrast to classical FEA26

where geometry is only approximated.27

IGA is closely related to the meshless or mesh-free methodologies due to its use of spline28

basis functions. Application of spline basis functions enables some properties not seen in29

FEM, such as exact geometry description, no cumbersome meshing, usage of higher-order30

basis functions, higher continuity of solution and geometry, more efficient refinement adap-31

tive procedures and multiresolution approach [16]. Efficient numerical modeling using spline32

functions does not always have to be associated exclusively with IGA involving geometry33

transformations, because everything can only be performed in the physical domain which is34

immersed to the background mesh defined on regular rectangle in 2-D or cube in 3-D (see35

for instance immersogeometric methods in Hsu et al. [17], Rvachev structure method by36

Rvachev et al. [18] or WEB-splines by Höllig et al. [19]).37

The development of adaptive methods [20, 21, 22, 23] for local refinement and coarsening38

became one of the most important researched topics within IGA. Since a fundamental lim-39

itation of traditional NURBS is the lack of potential for local refinement, several solutions40

have been derived, such as T-splines [13, 24, 25, 26, 27, 28, 29], hierarchical B-splines (HB)41

[14], truncated hierarchical B-splines (THB) [30, 31, 32, 33, 34] and locally refined B-splines42

(LR) [35]. Furthermore, linear independence, stability and partition of unity as well as local43

refinement and adaptation became center topics for these adaptive solutions.44

Figure 1: Refinement procedures.

Adaptive isogeometric methods attract a lot of attention and are a very active field of45

research which can generally be divided to h-refinement (Figure 1b; spline functions of the46
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same order but smaller knot intervals, i.e. higher frequencies), p-refinement (Figure 1c;47

higher degree of basis functions), r-refinement (Figure 1d; redesigning the mesh without48

changing the number of nodes and only adjusting their positions) and their combinations.49

Even though B-splines and NURBS are most commonly used spline technologies in the50

isogeometric settings, due to their tensor product structure, they are not well suited to treat51

localized phenomena. Hierarchical B-splines (HB) constitute one of the most promising52

solutions to easily define adaptive spline grid which preserve the non-negativity of standard53

B-splines and enables the possibility to properly deal with local problems [14]. However,54

since the hierarchical B-spline basis functions in non-rational form do not satisfy partition55

of unity, it may produce ill-conditioned control meshes at the refined level [30]. To overcome56

this deficiency, the truncated mechanism was first developed by Giannelli et al. [14] for the57

hierarchical B-spline basis functions (THB) to form a partition of unity and to decrease the58

overlapping of basis functions for better numerical conditioning.59

In addition to spline functions, relatively lesser-known atomic basis functions have been60

used in recent times (see Rvachev and Rvachev [36] and Gotovac [37]). Atomic basis func-61

tions can be placed between classical polynomials and spline functions. However, in practice,62

their use as basis functions is closer to splines or wavelets (see Beylkin and Keiser [38]). Go-63

tovac [37] systematizes the existing knowledge about atomic basis functions and transforms64

them into a numerically appropriate form, especially Fup basis functions as a typical mem-65

ber of atomic class of basis functions. Kozulić [39] and Gotovac and Kozulić [40] showed66

the basic possibilities of using Fup basis functions in structural mechanics and numerical67

analysis. The use of Fup basis functions has been shown to solve the problem of signal68

processing (see Kravchenko et al. [41]), the initial problem (see Gotovac and Kozulić [42])69

and the boundary problems using the non-adaptive Fup collocation method (see Kozulić70

and Gotovac [43] and Gotovac et al. [44]).71

Gotovac et al. [45] presented a true multiresolution approach based on the Adaptive Fup72

Collocation Method (AFCM). The heart of the AFCM methodology lies in the Fup basis73

functions in conjunction with the collocation procedure. However, the main drawback was74

the lack of global and local mass balance due to the properties of the collocation framework75

and inability to describe the general irregular geometry. Malenica et al. [46] firstly devel-76

oped Control Volume Isogometric Analysis (CV-IGA) applied to the karst groundwater flow77

model, while Gotovac et al. [16] presented CV-IGA in the context of other Galerkin and78

collocation formulations. Kamber et al. [47] set foundation for efficient adaptive spatial79

procedure developing 1-D hierarchical Fup (HF) basis functions inside CV-IGA. HF have80
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the option of local hp-refinement such that they can replace certain Fup basis functions at81

one resolution level with new basis functions at the next resolution level that have a smaller82

length of the compact support (h-refinement) but also higher order (p-refinement).83

In this work, we present a novel adaptive algorithm that is based on hierarchical 2-D Fup84

basis functions and CV-IGA, which are closely related to the HB and THB. HF provides85

spectral convergence and presents a substantial improvement in comparison to THB that86

enable only polynomial convergence.87

2. Spline basis functions88

2.1. Hierarchical B-spline basis functions89

The B-spline basis functions are piecewise polynomial functions defined in parametric90

space. B-spline basis functions are defined recursively (see Cottrell et al. [15]) starting with91

piecewise constants (n = 0):92

Bi,0(ξ) =

1 ξi ≤ ξ < ξi+1

0 elsewhere
(1)93

and for n > 0, B-splines are defined by94

Bi,n(ξ) =
ξ − ξi
ξi+n − ξi

Bi,n−1(ξ) +
ξi+n+1 − ξ
ξi+n+1 − ξi+1

Bi+1,n−1(ξ). (2)95

Figure 2 presents B-spline basis functions for n = 0, 1, 2 on a uniform knot vector. An96

interesting fact is that standard piecewise constant and linear finite element functions are97

the same for n = 0, 1. However, for higher-orders of B-spline basis functions they differ from98

their FEA counterparts.99

Figure 2: Basis functions of order 0, 1, and 2 for uniform knot vector Ξ = {0, 1, 2, ...}.
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Bn (ξ) can be presented by using convolution theorem in the following form:100

Bn (ξ) =

∞∫
−∞

Bn−1 (ξ − t)B0 (t) dt (3)101

or:102

Bn(ξ) = Bn−1(ξ) ∗B0(ξ) = B0(ξ) ∗ ... ∗B0(ξ)︸ ︷︷ ︸
(n+1) times

(4)103

where n is the order of the B-spline. The convolution theorem states that the Fourier104

transform (FT) of Bn (ξ) can be expressed as a product of (n+1 ) particular FT’s of B0 (ξ)105

according to (4):106

fn(t) =

(
sint/2

t/2

)n+1

(5)107

so the inverse FT of Bn(ξ) is defined by:108

Bn(ξ) =
1

2π

∞∫
−∞

(
sin (t/2)

t/2

)n+1

· e−itξdt. (6)109

Equation (4) implies that the support of Bn (ξ) is the union of the (n + 1) characteristic110

intervals ∆ξ. By increasing the B-spline order, the length of its compact support also111

increases, and when n → ∞, the length goes to infinity. The coordinate ξT is called the112

vertex of the basis function (point with maximum function value) and serves as the origin113

for the shifting of the basis functions along the ξ axis by the length of the characteristic114

interval.115

In one-dimensional problems, a knot vector is a set of non-decreasing real numbers rep-116

resenting coordinates in the parametric space of the curve117

Ξ = {ξ1, ξ2, ..., ξn+p+1} (7)118

where ξi is the i-th knot, i is the knot index, i = 1, 2, ..., n+ p+ 1, n is the polynomial order119

of the B-spline, and p is the number of basis functions which comprise the B-spline. The120

interval [ξ1, ξn+p+1] is called a patch. If knots are equally-spaced in the parametric space,121

they are said to be uniform, otherwise they are non-uniform. More than one knot can be122

located at the same coordinate in the parametric space, and are referred to as repeated123

knots. A knot vector is said to be open if its first and last knots appear p+ 1 times. Bn (ξ)124

is presented by the local polynomial of the n-th order on each interval [ξk, ξk+1].125

We can summarize the properties of the B-splines basis functions as follows:126
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1. Bn-spline is positive on n+ 1 characteristic intervals and vanishes outside this interval127

i.e., B-splines have compact support where they have strictly positive non-zero values;128

elsewhere, they are zero, implying localized approximation properties.129

2. Bn-spline is (n − 1)-times continuously differentiable with discontinuities of the n-th130

derivative.131

3. A linear combination of shifted Bn-splines by a characteristic interval describes alge-132

braic polynomials up to the n-th order.133

4. A linear combination of m shifted B-splines by a characteristic interval describes a134

unit constant function (“partition of unity”), that is135

m∑
i=1

Bi,n(ξ) = 1 (8)136

5. Bn-splines can be presented by a linear combination of the shifted B-splines of the137

same order, but using two-times-smaller support. This implies that B-splines support138

multiresolution analysis and efficient adaptive numerical procedures (e.g., [20, 21, 22,139

23, 24, 30, 31, 33, 32]).140

B-spline basis functions are refinable, which enables the construction of HB and its trun-141

cated variant THB. Truncated hierarchical B-splines (THB) were introduced and analysed142

in [14, 48]. THB-splines can be considered as an upgrade for hierarchical B-splines (HB) i.e.,143

an alternative base for the space of hierarchical splines, that retains the partition of unity144

property and reduces the support of the basis functions, therefore reducing the interaction145

between them. In the classical hierarchical construction, coarse basis functions of a certain146

level l whose support is completely covered by finer basis functions of level l+1 are replaced.147

However for THB, the replacement is done as in the hierarchical case with addition that148

coarse basis functions whose support has a non-empty overlap with the domain Ωl+1 are149

truncated (see Figure 3).150

THB refinability (see [14, 30]) indicates that a basis function Bl
n defined on Ξl can be151

represented as a linear combination of n+ 2 Bl+1
n basis functions defined on Ξl+1 as,152

Bl
i,n(ξ) =

n+1∑
k=0

cni,kB
l+1
2i+k,n(ξ) with cni,k =

1

2n

(
n+ 1

k

)
, i = 0, ...,ml − 1 (9)153

where cni,k are the refinement coefficients and ml is the number of basis functions defined on154

Ξl. This procedure enables h-adaptive methods because each next resolution level has basis155

functions with two times smaller compact support (h-refinement).156
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The n+ 2 basis functions Bl+1
2i+k,n on the next level are called the children of Bl

i,n(ξ) i.e.,157

denoted as,158

chdBl
i,n(ξ) =

{
Bl+1

2i+k,n(ξ)|k = 0, 1, ..., n+ 1
}
. (10)159

In the following, construction of only two consecutive levels with basis functions from160

level l and l+ 1 will be shown, where l ≥ 0. Starting from the initial parametric domain Ωl
161

with equally spaced knots Ξl = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, Bl set of B-spline basis functions162

are defined on a level l (see Figure 3). The supports of all the basis functions Bl from initial163

level l covers Ωl i.e., Ωl = supp Bl. According to [49], the function space spanned by Bl164

can be enlarged by replacing the certain B-spline basis functions with their children, which165

indicates a local refinement of basis functions. Figure 3 shows a construction process for166

univariate cubic THB in three steps:167

• Identify a set of basis functions Blp ⊆ Bl to be refined at level l (gray solid curve) and168

designate them as passive while the remaining basis functions in Bl are designated as169

active (Bla = Bl \ Blp).170

• Obtain the children at level l+ 1 (red solid curves) only for the passive Blp and define171

them as active; Bl+1
a = chdBlp.172

• Merge all of the basis functions that are active from levels l and l + 1 to obtain the173

hierarchical B-spline basis functions on the new level,174

Bl+1
hbf = Bl+1 = Bla ∪ Bl+1

a . (11)175

Eq. (11) refers to the global selection of all active basis functions, where the active176

basis functions are updated in each recursive step described above. Hierarchical B-spline177

basis functions in nonrational form do not satisfy partition of unity. To overcome that178

problem and to decrease the overlapping of basis functions for better numerical conditioning,179

a truncated mechanism for hierarchical B-splines was developed [14, 30]. Figure 3 shows180

how in the classical hierarchical construction, coarse basis functions from level l whose181

support is completely covered by finer B-splines of level l + 1 are replaced. THB-splines182

refinement (replacement) works as in the hierarchical case with addition of active coarse183

basis functions Bla whose supports have a non-empty overlaps with Ωl+1. These functions184

need to be modified or truncated as follows.185

Definition. Given a set of (passive) basis functions Blp to be refined, refinement area is186

defined as Ωl+1 = suppBlp. Provided that Bl
i /∈ Bl

p is refinable and following Eq. (9) for its187
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(a) HB-splines on level l and l + 1 (b) THB-splines on level l and l + 1

Figure 3: Comparison of univariate cubic HB- and THB-splines. (a) Three steps to construct univariate

cubic HB-spline basis function without truncation and (b) tree steps to construct univariate cubic HB-spline

basis function with truncation (THB).

refinability gives,188

Bl
i(ξ) =

∑
suppBl+1

j ⊆suppBli

ci,jB
l+1
j (ξ), (12)189

where ci,j ∈ R are refinement coefficients from mid-knot insertions, and Bl+1
j (ξ) ∈ chdBl

i(ξ).190

The truncated basis function Bli is defined as191

trunBl
i(ξ) =

∑
suppBl+1

j *Ωl+1

ci,jB
l+1
j (ξ) (13)192

with respect to Blp [30].193

Equation (13) indicates that only children of Bli whose supports are fully contained in194

Ωl+1 are discarded while constructing the truncated basis function trunBl
i. In Figure 3, the195

gray solid line represents the basis function to be refined Blp which is also set as passive, and196

refinement area is Ωl+1 = [3, 7]. In case for univariate cubic hierarchical B-splines, each basis197

function from level l has five children on level l+ 1, and four basis functions surrounding Blp198

(2 on the left and 2 on the right side; gray dashed curve) need to be truncated because they199

have children with supports fully contained in Ωl+1. For the two basis functions adjacent to200
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Blp three children are discarded, and for the other two basis functions, only one children is201

discarded. Basis functions that are far away from refinement area Ωl+1 i.e., they do not have202

children within that area, are not truncated. After truncating all designated basis functions,203

new level is constructed by combining active functions from level l (black solid curve and204

gray dashed curve; non-truncated and truncated) with active basis functions from level l+1205

(red solid curve; Bl+1
a = chdBlp).206

The hierarchical B-spline basis with truncation has been proven to form a partition of207

unity and therefore achieves strong stability [48]. It gives a sparser connectivity among basis208

functions at different levels, and it can preserve geometry when local refinement is performed209

[30].210

2.2. Hierarchical Fup basis functions211

Fup basis functions belong to the class of atomic functions (see [36],[40]) and span vector212

space of algebraic polynomials, while their properties are closely related to the B-splines, as213

will be explained in the sequel.214

Function up (ξ) can be obtained by an infinite number of convolutions of the contracted215

B0 (ξ) with compact support 2−k and vertex value 2k, k ∈ N, according to following convo-216

lution procedure:217

up (ξ) =B0 (ξ) ∗B0 (2ξ) ∗ · · · ∗B0

(
2kξ
)
∗ · · · ∗B0 (2∞ξ) (14)218

From (14), the compact support of up (ξ) is the union of an infinite number of finite219

intervals. However, its compact support is finite:220

hup=
∞∑
k=0

1

2k
= 2 → supp up (ξ) = [−1, 1] (15)221

The convolution procedure (14) causes up(ξ) to contain all polynomial orders by parts222

of its compact support. Due to its infinite number of continuous and non-zero derivatives,223

function up(ξ) can be regarded as a perfect spline.224

The values of up(ξ) and its derivatives can be found exactly in the form of rational225

numbers in the binary-rational points. Those binary-rational points are defined as:226

ξbr= −1+k · 2−m, m∈N, k= 1, . . . ,2m+1. (16)227

At all other points of the compact support calculation of up (ξ) can be done only approxi-228

mately, but up to the computer accuracy.229
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For the calculation of up(ξ) values at arbitrary points, Gotovac and Kozulić [40] suggested230

a special series based on Taylor series of the up(ξ) function at the binary-rational points ξbr231

(because it is then a polynomial of the n-th order). Values of the even function up(ξ) in232

arbitrary point ξ∈ [0, 1] can be presented as follows:233

up (ξ) = 1−up(ξ−1) = 1−
∞∑
k=1

(−1)1+p1+···+pk pk

k∑
j=0

Cjk·∆k
j (17)234

where the coefficients Cjk are rational numbers containing values of up(ξ) at the binary-235

rational points ξk = −1 + 1/2m [40]:236

Cjk =
1

j!
2j(j+1)/2up(−1 + 2−(k−j)) ; j = 0 , 1 , . . . , k ; k = 1 , 2 , . . . , ∞ (18)237

Factor ∆k in (17) presents the difference between the real value of coordinate ξ and its238

binary presentation with k bytes, where p1 . . . pk are the digits 0 or 1:239

∆k = ξ−
k∑
i=1

pi·
1

2i
(19)240

For an exact description of polynomials up to the n-th order on the interval ∆ξn = 2−n, it241

is necessary to use 2n+1 basis functions obtained by shifting up(ξ) for ∆ξn. Such a relatively242

large number of basis functions implies poor approximation properties of up (ξ) . This is the243

main reason why application of up(ξ) in numerical analysis for practical purposes is quite244

limited.245

Fupn(ξ) are another class of atomic basis functions, also belonging to the polynomial246

types of basis functions, which require only (n+2 ) basis functions to exactly describe poly-247

nomials up to the n-th order on interval ∆ξn = 2−n. For instance, for the development248

of a 4-th order polynomial, only 6 or (n+2 ) functions Fup4(ξ) are needed in comparison249

to 32 up(ξ) basis functions. The compact support of Fupn(ξ) contains n+2 characteristic250

intervals ∆ξn = 2−n:251

supp Fupn(ξ) =
[
− (n+2) ·2−n−1, (n+2)·2−n−1

]
(20)252

For n = 0, the following holds:253

Fup0(ξ) = up(ξ) (21)254

Function Fupn(ξ) can be obtained by a convolution procedure using the contracted Bn255

and up basis function:256

Fupn(ξ) =Bn(2n ξ)∗up (2n+1 ξ) (22)257
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This means that Fupn(ξ) is closely related to Bn (ξ) and that they together share all258

the mentioned properties. However, Fupn(ξ) has better approximation properties than259

Bn (ξ) due to the convolution with the up function containing all orders of polynomials260

by parts and infinite continuity. Moreover, they share the same convergence properties261

because it is directly linked by the polynomial order which can be exactly described by262

linear combination of these functions. Additionally, the Fupn(ξ) has better approximation263

properties which are paid by one more characteristic interval for the same n-th order of264

basis functions. Equation (22) is not numerically favorable for calculating the value of the265

function Fupn(ξ).266

Atomic basis functions have a “deeper” mathematical background, and they are generally267

solutions of differential-functional equations, which for Fupn (ξ) take the following form:268

Fup
′

n (ξ) = 2
n+2∑
k=0

(
Ck
n − Ck−2

n

)
·Fupn

(
2ξ − k

2n
+
n+ 2

2n+1

)
(23)269

where Ck
n are binomial coefficients defined as270

Ck
n =

(
n

k

)
=

(n)!

(n− k)! · k!
(24)271

Equation (23) presents the atomic structure of these basis functions because its deriva-272

tives (but also a function values as will be shown in the sequel) are decomposed by a linear273

combination of these same functions (Rvachev and Rvachev [36]). Fupn(ξ) can be calculated274

by a linear combination of up(ξ) mutually shifted by the characteristic interval 2−n:275

Fupn(ξ) =
∞∑
k=0

Ck(n)·up
(
ξ − 1− k

2n
+
n+ 2

2n+1

)
(25)276

The zero coefficient in (25) is:277

C0(n) =2C
2
n+1 = 2n(n+1)/2 (26)278

Other coefficients are calculated in the form Ck(n) = C0 (n)·C ′

k(n), where the coefficients279

C
′

k(n) are obtained using the following recursive formulas:280

C
′

0 (n) = 1

C
′

k(n) = (−1)kCk
n+1 −

min { k ; 2n+1−1}∑
j=1

C
′

k−j (n) · δj+1

(27)281
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In the numerical modeling of boundary value problems, there is a need to modify282

boundary basis functions in order to keep the same approximation properties as inside283

the domain. The concept of boundary basis functions refers to the linear combination of284

basis functions whose compact supports are at least partially located inside the domain.285

For simpler notation, modified boundary Fupn basis functions are designated as ϕn,j, j =286

−[(n+ 1)/2], ..., [n/2] on the left domain boundary ξA, and j = N − [n/2], ..., N + [(n+ 1)/2]287

on the right domain boundary ξB (N is the number of characteristic intervals ∆ξn inside288

the domain).289

The boundary basis functions ϕn,j on the left domain boundary are modified so that i-th290

derivation is satisfied in a manner291

ϕ
(i)
n,j (ξA) 6= 0 for j + [(n+ 1)/2] 6 i 6 n

ϕ
(i)
n,j (ξA) = 0 otherwise; i ∈ N

(28)292

Modification of the right boundary basis functions is achieved by translating and mir-293

roring the left modified boundary basis functions. In the vector space of mutually displaced294

Fupn basis functions, it is necessary to modify the (n+ 1) basis functions on each boundary.295

We can summarize the properties of the Fup basis functions as follows:296

1. Fupn is positive on n+2 characteristic intervals and vanishes outside these intervals i.e.,297

Fup basis functions have compact support where they have strictly positive non-zero298

values; elsewhere, they are zero, implying localized approximation properties.299

2. Fupn is infinitely differentiable.300

3. A linear combination of m shifted Fup basis functions by a characteristic interval301

describes a unit constant function (“partition of unity”), that is302

1

2n

m∑
i=1

Fupi,n(ξ) = 1 (29)303

4. Fupn can be presented by a linear combination of the shifted Fup basis functions with304

the higher order, but using two-times-smaller supports. This implies that Fup basis305

functions enable multiresolution analysis and efficient adaptive numerical procedures306

(e.g., [47]).307

Basis function Fupln defined on Ξl can be represented as a linear combination of n + 2308

Fupl+1
n+1 basis functions defined on Ξl+1,309

Fupln(ξ) =
n+1∑
k=0

Ck
n+1 · Fupl+1

n+1

(
ξ − k

2n+1
+
n+ 1

2n+2

)
, (30)310
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where Ck
n+1 are the refinement coefficients311

Ck
n+1 =

1

2n+1

(
n+ 1

k

)
(31)312

The n+ 2 basis functions Fupl+1
n+1 are called the children of Fupln, denoted as313

chdFupln(ξ) =

{
Fupl+1

n+1

(
ξ − k

2n+1
+
n+ 1

2n+2

)∣∣∣∣k = 0, 1, ..., n+ 1

}
(32)314

In contrast to THB, hierarchical Fup basis functions (HF) enable hp-adaptive methods315

because each next resolution level not only decreases compact support, but also increases316

the order of the basis functions (hp-refinement).317

At the zero coarsest level, we can define a set of uniformly distributed Fup basis functions318

F0. The initial domain is covered with the compact supports of all the Fup basis functions in319

F0 i.e., Ω0 = suppF0. Since Fup basis functions are refinable, it indicates that the function320

space spanned by F0 can be enlarged by replacing the selected Fup basis functions with321

their children (see Eq. (30)) [40]. In the following, we will show only two consecutive levels322

and construct level l + 1 from the level l.323

Figure 4 illustrates the construction process of hierarchical Fup basis functions in three324

steps:325

• Identify a set of basis functions F lp ⊆ F l to be refined at level l (black dashed curve)326

and designate them as passive while the remaining basis functions in F l (black solid327

curves) are designated as active (F la = F l \ F lp).328

• Obtain the children at level l + 1 (red solid curves) only for the passive Fupln and329

define them as active; F l+1
a = chdF lp.330

• Merge all of the basis functions that are active from levels l and l + 1 to obtain the331

hierarchical Fup basis functions,332

F l+1
hbf = F l+1 = F la ∪ F l+1

a . (33)333

Hierarchical Fup basis functions satisfy partition of unity such that every Fupn basis334

function on the zero coarsest level is multiplied with constant 2−n (see Eq. (29)). Since335

every Fupln basis function defined on the level l can be represented as a linear combination336

of n + 2 Fupl+1
n+1 basis functions defined on the level l + 1 (see Eq. (30)), it entails that all337

of the Fup basis functions that are created at higher resolution levels also satisfy partition338

of unity.339
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Figure 4: The three steps to construct hierarchical Fup basis functions. (a) In level l, basis functions F lp
that need to be refined are determined (black dashed curve |Fupl1) and they are defined as passive, while

remaining basis functions are defined as active; (b) In level l + 1, three children (red solid curves |Fupl+1
2 )

are designated as active; and (c) all active basis functions from levels l and l+ 1 are summed and form the

hierarchical Fup basis functions F l+1
hbf .

3. Adaptive methodology340

The 2-D adaptive spatial strategy used in this work is a novel approach based on the341

Control Volume IsoGeometric Analysis, shortly CV-IGA (Malenica et al. [46], [50], Gotovac342

et al. [16]) and hierarchical Fup basis functions (hp-refinement; see Kamber et al. [47]).343

Firstly, CV-IGA concept is explained. In the section 3.4, adaptive scheme for approximating344

known function is presented. It is used for easier understanding of whole adaptive process345

and serves as introduction for boundary value problems (BVPs). In the section 3.5, adaptive346

strategy for solving BVP with its differences, but also similarities with approximation of a347

known function is presented.348

3.1. Control volume isogeometric analysis349

In FEA there is one notion of a mesh and another for element, but also one element has350

two representations, one in the parent domain and one in physical space. Degrees of freedom351

of the finite elements are usually the values of the basis functions at the nodes, and elements352
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are usually defined by their nodal coordinates. Finite element basis functions, often referred353

to as “interpolation functions” or “shape functions”, are typically interpolatory and may354

take on positive and negative values. However, for example in NURBS, the basis functions355

are usually not interpolatory and there are two notions of meshes, the control mesh and the356

physical mesh. The control points (see Figure 5) define the control mesh and the control357

mesh interpolates the control points. The control points enables the designer to create a358

wide range of desired objects, for instance, in the aviation or car industry. The control mesh359

consists of multilinear elements and does not conform to the actual geometry. Instead, it360

can be described like a scaffold, that controls the geometry. Control variables that defines361

the control mesh are the degrees of freedom that are located at the control points (red circles362

on the Figure 5).363

The physical mesh, i.e., decomposition of the actual geometry, consists of two types of364

elements, the patch and the knot span (see Figure 5). The patch may be thought of as a365

macro-element or subdomain. While there are multiple patches in FEM (one element one366

patch) in IGA most geometries, for academic test cases, can be modeled with a single patch.367

Each patch has two representations, one in physical space and one in a parent domain.368

Patches in two-dimensional topologies are rectangles (see Figure 5), and in three dimensions369

are a cuboid in the parent domain representation. Patches can be decomposed into knot370

spans bounded by knots which are points, lines and surfaces in 1-D, 2-D, and 3-D topologies,371

respectively.372

Figure 5 shows schematic illustration of IGA how one 2-D subdomain or patch is trans-373

formed from the parameter (virtual) space to the physical (real) space using following spline374

representation375

x(ξ, η) =
∑
j=1

xjφj(ξ, η); y(ξ, η) =
∑
j=1

yjφj(ξ, η) (34)376

where xj and yj are the coordinates of the control points B(xj, yj) in the physical space,377

while ξ and η represents the coordinates in the parameter space. However, the main part of378

(34) are spline basis functions φj which in classic IGA are B-splines and NURBS. It is clear379

from (34) that IGA operates only with basis functions in the parametric regular domain380

since transformations from the parametric to real physical space, and vice versa are defined381

by the Jacobian382

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

N∑
j=1

[
∂φj
∂ξ
xj

∂φj
∂ξ
yj

∂φj
∂η
xj

∂φj
∂η
yj

]
(35)383
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Figure 5: Schematic illustration of isogeometric analysis (IGA): physical space with control points and

control mesh, parameter space with spline basis functions and related parent elements, knot vectors, and

index space.

and its inverse384

J−1 =

[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
=

1

detJ

[
∂y
∂η

−∂y
∂ξ

−∂x
∂η

∂x
∂ξ

]
, (36)385

as in classic FEM. However, the main difference is that IGA considers the transformation386

of each patch, which can be thought of as a macro-element or a subdomain, while the FEM387

performs transformations for each element [15].388

The numerical solution in the parametric space is also described by independent set of389

spline basis functions390

u(ξ, η) =
∑
j=1

αjϕj(ξ, η) (37)391

It should be noted that number and order of the basis functions in the (34) and (37) may392

not be the same.393
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In the following, the control volume discretization process will be presented by consid-394

ering a simple steady-state advection-dispersion equation (ADE) in the form:395

∇ · (D∇u(x))−∇ · (vu(x)) = 0 in Ω (38)396

with appropriate boundary conditions:397

u(x) = uD on ΓD (39)398

399

(D∇u(x)− vu(x)) · n = qN(x) on ΓN (40)400

where u(x) represents the dependent variable, while the first and second term in Equa-401

tion (38) represent influence of the dispersive (diffusive) and advective (convective) flux,402

respectively, which in general may be function of time, space and/or an unknown solution.403

Domain boundaries under the Dirichlet and Neumann boundary conditions are ΓD and ΓN ,404

respectively, and n is the outward normal vector.405

Method of weighted residuals can be thought as a general approach for deriving the406

different numerical formulations. The main idea is to integrate differential equation (38)407

over the domain of interest and multiply it by a finite number of weighting (test) functions408

wi(x):409 ∫
Ω

∇ · (D∇u(x))wi(x)dΩ−
∫

Ω

∇ · (vu(x))wi(x)dΩ = 0 (41)410

where the number of test functions (wi) is generally the same as the number of basis func-411

tions. Two most used formulations in IGA are Galerkin (G-IGA; test functions are the same412

as basis functions, Hughes et al. [12]) and collocation formulation (C-IGA; test functions413

are Dirac functions located at Greville points, Schillinger et al. [51]). However in this work,414

formulation of control volume within IGA (CV-IGA) will be introduced.415

The control volume formulation is performed by firstly dividing the parametric space by416

m control volumes (see Figure 6) (Ωi; i = 1, ...,m). CV formulation [52] uses test functions417

defined in the following form:418

wi(x) =

1 x ∈ Ωi

0 x 6∈ Ωi

,Ωi ∈ Ω. (42)419

Substituting (42) in (41) and integrating only over the i-th control volume (CV) due to the420

properties of the test functions (42), the volume integrals at left side over the control volume421

are transformed into a surface integrals across Ωi boundaries Γi using Gauss’s theorem:422 ∫
Γi

(
D∇u(x)

)
ndΓ−

∫
Γi

(
vu(x)

)
ndΓ = 0 (43)423
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Figure 6: Discretization of 2-D domain with three different IGA formulations. Note that Greville points

(black circles) represents collocation points but also locations of the vertices of basis functions which are

crucial for creating CV boundaries.

where n is outward normal vector, thus obtaining the ADE conservative form.424

Finally, weak formulation (43) is defined on each control volume using spline basis func-425

tions and unit compactly supported test functions (42) in order to get fully discretized426

control volume formulation:427

αj

∫
Γi

(
D∇ϕj(x)

)
ndΓi −

∫
Γi

(
vϕj(x)

)
ndΓi

 =

∫
ΓNi

qNdΓN (44)428

where i denotes index of control volume and row of stiffness/conductance matrix, while j429

denotes index of spline basis function and column of the stiffness/conductance matrix. It is430

valid for all internal CV faces and boundary CV faces with Neumann boundary conditions.431

This implies that Neumann boundary conditions are weakly imposed by incorporating the432

known value of qN to the weak formulation. However, as in G-IGA, Dirichlet essential433

boundary conditions requires special treatment. In this paper, Dirichlet boundary conditions434

are satisfied in the strong sense by directly satisfying the boundary conditions values in the435

following form:436 ∫
ΓDi

u(x)dΓDi =

∫
ΓDi

uD(x)dΓDi (45)437

After using set of spline basis functions for representation of the numerical solution u(x)438
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(see Eq. (37)) yields439

αj

∫
ΓDi

ϕj(x)dΓD =

∫
ΓDi

uD(x)dΓD. (46)440

It should be noted that Dirichlet boundary conditions are satisfied in similar sense as in441

classical FEM. Equations linked with CVs which contain Dirichlet boundary conditions are442

replaced with (45), and later when we solve the system of equations and get unknown spline443

coefficients, from these memorized equations the Dirichlet boundary fluxes are calculated.444

Conservation is an interesting feature of the control volume formulation. The conserva-445

tion is exactly satisfied over any control volume (local conservation), as well as over the whole446

computational domain (global conservation). Furthermore, even the coarse-mesh solution447

exhibits an exact integral balance [52].448

CV-IGA requires cheaper numerical integrations then G-IGA because control volume449

formulation (43) requires only integration over CV boundaries Γi, while Galerkin formulation450

requires (full) integration over the part of domain where the particular test function is451

defined. Furthermore, the number of nonzero basis functions for each discretized equation452

in CV-IGA is lower then in G-IGA, thus the cost for the solution of the system of equations is453

generally lower then that for G-IGA. For comparison, the number of nonzero basis functions454

for CV-IGA for each discretized equation is (n+ 2)dim for odd order of basis functions and455

(n + 3)dim for even, whereas for G-IGA this number is defined by (2n + 3)dim, where dim456

denotes the dimensionality of the problem. On the other side, CV-IGA is more expensive457

than C-IGA which contains only one integration (collocation) point per degree of freedom458

and smaller number of nonzero elements in the stiffness/conductance matrix. Generally, CV-459

IGA lies between two classical IGA formulations enabling local and global mass conservation460

(see details in Gotovac et al. [16]).461

3.2. 2-D basis functions462

Multi-dimensional Fup basis functions are obtained as tensor products of the one-dimensional463

basis functions defined for each coordinate direction. For example, the two-dimensional Fup464

basis functions are defined as,465

Fupn(ξ, η) = Fupn(ξ) · Fupn(η) (47)466

where Fupn(ξ) and Fupn(η) are n-th order Fup basis functions that are defined in the ξ-467

and η- parametric directions, respectively. Figure 7 shows two-dimensional Fup1(ξ, η) basis468

function and its first partial derivative.469
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Figure 7: 2D Fup basis functions. F=Fup1(ξ, η); a)F and b)∂F∂ξ .

For 1-D Fup basis functions, Fupln defined on Ξl can be represented as a linear combina-470

tion of n+ 2 Fupl+1
n+1 defined on Ξl+1 (see Eq. (30)). Fupln(ξ, η) defined on the level l can be471

represented as a linear combination of (n + 2)x(n + 2) i.e., (n + 2)2 Fupl+1
n+1 defined on the472

level l + 1,473

Fupln(ξ, η) =
n+1∑
i=0

n+1∑
j=0

Ci
n+1C

j
n+1Fup

l+1
n+1

(
ξ− i

2n+1
+
n+ 1

2n+2

)
Fupl+1

n+1

(
η − j

2n+1
+
n+ 1

2n+2

) (48)474

where Ci
n+1 and Cj

n+1 are refinement coefficients (see Eq. (31)).475

For example Fupl1 is defined on the knot vectors Ξl = {0, 1
3
, 2

3
, 1} and H l = {0, 1

3
, 2

3
, 1},476

and its nine children Fupl+1
2 (see Eq. (32)) are defined on a knot vectors Ξl+1 = {0, 1

6
, 1

3
, 1

2
, 2

3
, 5

6
, 1}477

and H l+1 = {0, 1
6
, 1

3
, 1

2
, 2

3
, 5

6
, 1}.478

The trial function space of uniformly distributed Fupn(ξ, η) basis functions on the resolu-479

tion level l and given order n are defined over the knot vectors in the form Ξ = {ξ1, ξ2, ..., ξmξ}480

and H = {η1, η2, ..., ηmη}, where mξ and mη represents number of basis functions in ξ-481

and η- directions, respectively. The number of basis functions on the first resolution level482

ml,ξ,ml,η; l = 0 are defined as input parameters.483

Length of the characteristic intervals (∆ξ,∆η) are calculated as484

∆ξl =
ξmξ+n+2 − ξ1

(ml,ξ − n− 1)2l
; ∆ηl =

ηmη+n+2 − η1

(ml,η − n− 1)2l
, (49)485
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where ξ1 and ξmξ+n+2 are the first and last members of the knot vector in ξ- direction and486

η1 and ηmη+n+2 are the first and last members of the knot vector in η- direction on the first487

resolution level (l = 0).488

Basis functions whose compact support is at least partially located outside the domain489

are modified by satisfying i-th derivations (see equation (28)). In the vector of mutually490

displaced Fupn basis functions in 2-D, it is necessary to modify the (n + 2) basis functions491

in ξ and/or η direction if they are near boundary of the domain.492

3.3. Selection of control volumes493

CV-IGA directly depends on selection of dimensions and positions of CVs. Since control494

volume approach can be considered as subdomain collocation, selection of control volumes495

is directly related to the Greville collocation points (see IGA collocation for example in496

Schillinger et al. [51]). The vertex of the basis function, i.e., the coordinate ξT , is the point497

with the maximum function value. The vertex serves as the origin for the shifting of the498

basis functions along the ξ and η axis by the length of the characteristic interval (∆ξ,∆η).499

However, not all vertices are uniformly spaced according to the length of the characteristic500

interval. Vertices of the modified boundary basis functions (see subsection 2.2) are shifted501

and located inside the domain area. Their exact location can be calculated. In case of502

the B-splines of order n, the Greville points are defined to be the mean location of n − 1503

consecutive knots in the knot vector for each basis spline function of order n [53]. Since Fup504

basis functions have one more characteristic interval for the same order, the grid points of505

the Greville abscissae calculated for the Bn correspond to the Greville abscissae grid points506

of the Fupn−1. The Greville abscissa (Figure 6 - black circles) for the Fupn basis functions507

can easily be computed from a knot vector Ξ = {ξ1, ξ2, ..., ξm+n+2}508

ξ̂i =
1

n+ 1
(ξi+1 + ...+ ξi+n+1), i = 1, ...,m (50)509

where n is the order of the basis functions, and m is the number of basis functions. From510

this point, when basis function vertex is mentioned, it is referred to the real coordinate511

of the vertex, except for modified boundary basis functions whose vertex coordinates are512

represented by the Greville points.513

Figure 6 shows distribution of finite elements, collocation points and control volumes for514

all three IGA formulations (see also Gotovac et al. [16]). For each control volume (CV),515

there are four CV boundaries or faces. Each CV boundary represents side faces of CV in a516

manner that it lies in the middle between two adjacent Greville points (see also Figures 8517
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Figure 8: A nested sequence of CV domains for the construction of the Fup hierarchy according to relation

Ωl ⊇ Ωl+1 for two-dimensional case. (a) uniform nonoverlapping CV distribution at the first level; (b) CV

distribution on the first and second resolution level with active Fup basis functions from F0 and F1; (c)

Hierarchical mesh with overlapping CVs (dots represents basis functions vertices).

and 9). Figure 8 shows a nested sequence of CVs domain, together with the corresponding518

vertices for each resolution level l, where each CV is linked with only one Greville point519

(vertex) i.e., the number of basis functions corresponds to the number of CVs.520

Figure 8a) shows uniformly distributed Fup1 basis functions on the knot vectors Ξ0 =521

{0, 0, 0, 1
8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
, 1, 1, 1} and H0 = {0, 0, 0, 1

8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
, 1, 1, 1} with the position522

of vertices (black dots) and corresponding CVs represented with solid line. Furthermore, af-523

ter replacing one Fup1 (assigned as passive) basis function from the first resolution level, nine524

Fup2 basis functions (red dots, assigned as active) are introduced to the second resolution525

level (Ω1). Each CVs boundary on the higher second level (see Figure 8b-c) are positioned526

exactly half the length of the characteristic intervals ∆ξ, ∆η (see Eq. (49)) from the cor-527

responding Fup basis function vertex, thus higher levels (CVs) are overlapping with lower528

levels (CVs). After assembling all active basis functions (assembles active Fup1 and Fup2529

basis functions; F1 = F0
a ∪ F1

a ), CV overlapping distribution is defined for these two levels.530

However, it is possible that few CVs from higher level cover the same area as one larger531

CV from the lower level which creates problem of linearly dependent equations. Therefore,532

higher level that is in contact with lower level should have increased CV area to avoid prob-533

lem of singular stiffness matrix. Enlargement of CV dimensions to ∆ξ(1 + δ), ∆η(1 + δ) can534

be chosen using parameter δ ∈ 〈0, 1
2
〉. Here, we choose δ = 1

4
(see Figure 8c). All Cvs from535

different resolution levels are rectangles in the parametric domain. Overlapping of some CVs536

makes this algorithm even more robust, but main advantage is easier process of constructing537

test (weight) functions in two-dimensional domains. Also, it should be emphasized that the538
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CV overlapping is the simplest possible algorithm when compiling hierarchical mesh and539

to simplify the numerical integration across each control volume. Some different algorithm540

could avoid overlapping of CVs, but would make integration process more complex over541

unregular CVs including cumbersome meshing procedure with Voronoi cells. We choose as542

simple as possible algorithm with all regular CVs in the parametric space, while avoiding543

any meshing procedure which can compromise meshless nature of CV-IGA.544

3.4. Adaptive strategy for the function approximation545

Adaptive CV-IGA with hierarchical Fup basis functions is easy and effective to present546

firstly in the simple functions approximation. The main idea is to represent the known547

function (f) in an adaptive manner so that coarse control volumes and lower order of Fup548

basis functions are used in regions where the solution is smooth, while fine control volumes549

and a higher order of Fup basis functions are used in those areas where the solution varies550

strongly.551

The approximation f̃(x, y) of the known function f(x, y) : Ω → R is presented in the552

form of the linear combination of Fup basis functions. The difference between the known553

function f(x, y) and its numerical approximation f̃(x, y) yields the numerical error:554

ε(x, y) = f(x, y)− f̃(x, y) = f(x, y)−
m∑
j=1

αjϕj(x, y) (51)555

The meaning of the approximation is to minimize the error ε(x, y). If the control volume556

formulation is applied, the unknown coefficients αj are obtained from the following system557

of equations:558

m∑
j=1

αj

∫
Ωi

ϕj(x, y)dΩ =

∫
Ωi

f(x, y)dΩ; i, j = 1, 2, ...,m (52)559

which can be presented in a reduced matrix form:560

aijαj = bi; i, j = 1, 2, ...,m (53)561

where562

aij =

∫
Ωi

ϕj(x, y)dΩ; bi =

∫
Ωi

f(x, y)dΩ. (54)563

The adaptive criteria for the function approximation is defined as:564 ∫
ΩA

1

ΩA

(
|f(x, y)− f̃(x, y)|

)
dΩ < εA (55)565
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where εA represents the defined threshold and ΩA is the integration area. Adaptive criteria566

(εA) defines whether Fup basis functions are kept or replaced while refining resolution level567

l. For the i-th control volume (CV), boundaries are defined via Γi,j,l,Γi,j,r,Γi,j,u and Γi,j,d568

(see Figure 9), where subscript letter l (left), r (right), u (up) and d (down) represents side569

faces of the CV. Since the numerical approximation (f̃) satisfies the average function value570

of the known function (f) over every CVi (i = 1, 2, ...,m) on the current resolution level, the571

main problem for enabling an adaptation is to test how close the numerical approximation572

(f̃) is with respect to the known function (f). Therefore, we perform testing on the each573

quarter of the CV (see Figure 9). If all CVs satisfy adaptive criteria, the adaptive procedure574

stops. However, if one or more CVs did not satisfy Eq. (55), than those CVs are marked575

as refinable. Furthermore, all corresponding Fup basis functions that are at least partially576

located inside refinable CVs are marked as passive. Other Fup basis functions are marked577

as active, and they are kept in the next level. For the passive Fup basis functions, the578

algorithm introduces their children, as it is earlier explained (see Eq. (30)). In this way,579

using mentioned adaptive criteria on CV quarters, adaptive hierarchical grid is created using580

the hierarchical Fup basis functions with different resolutions and orders over the adaptive581

grid.582

3.5. Boundary value problems583

The adaptive spatial strategy used for the boundary value problem (BVP) is in some584

sense similar to the one used for function approximation. In the following, focus will be585

on the main differences between these two strategies. The major differences are adaptive586

criteria and adaptation of boundary conditions.587

In the function approximation, a known function is approximated, while in BVP, we588

usually do not know the solution of the differential equation. The question is how to solve589

(approximate) the BVP. One of the possible approaches is shown considering the ADE (see590

Eq. (38)). In that case, solving ADE is reduced to the flux conservation over all CVs (see591

Eq. (44)). Since the CV formulation exactly satisfies Eq. (44) (i.e., the weak integral form592

of the conservation law) over each CV on the current resolution level, the adaptive criteria593

is used to check the conservation error for each quarter of the particular i-th CV (see Figure594

9) ie., the adaptive criteria for the ADE problem is defined as595

αj

∫
Γi

(
D∇ϕj(x)

)
ndΓi −

∫
Γi

(
vϕj(x)

)
ndΓi

− ∫
ΓNi

qNdΓN < εA (56)596
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Figure 9: Dividing i-th CV into four equal parts (CVi,j,1, CVi,j,2, CVi,j,3 and CVi,j,4) while testing adaptive

criteria on i-th CV.

where εA represents the defined threshold. All CVs where at least one of the quarters has597

the conservation error greater than the prescribed threshold are marked as refinable, and598

the adaptive procedure refines selected basis functions in the next level in the same way as599

for the function approximation. However, in BVP there are boundary conditions that needs600

to be satisfied. CVs with Neumann boundary conditions are satisfied in same sense as all601

internal CVs by checking conservation error for each quarter of the particular i-th CV, i.e.602

Neumann boundary conditions are weakly imposed by incorporating the known value (40)603

to the weak formulation (44). However, Dirichlet boundary conditions are satisfied in the604

strong sense by directly satisfying the boundary values (39). This implies that CVs with605

Dirichlet boundary conditions use calculated boundary fluxes from memorized equations606

and check mass conservation with other internal fluxes. If mass conservation is not satisfied,607

those Dirichlet CVs are marked as refinable.608

In the function approximation, adaptive criteria is set to be related to the function accu-609

racy Eq. (55), while in BVP the criteria is set to be the mass conservation error. However,610

the adaptive criteria can be defined in many ways. There are many other meaningful numer-611

ical and physical choices. For example, for function approximation, the function derivatives612

can be an ideal option in some cases. Furthermore, for BVP, the solution error between two613
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resolution levels can be defined as criteria [54]. Moreover, satisfaction of the Peclet number614

can be very valuable for ADE problems (see [55]). Finally, any combination of these criteria615

can also be new obtained criteria.616

4. Numerical examples617

4.1. Aim of the numerical examples618

The aim of the numerical tests herein is to investigate whether adaptive refinement619

using hierarchical Fup basis functions achieves spectral convergence rates, even while solving620

problems that may involve singularities, contrary to the application of uniform grid.621

Numerical examples are started with function approximation for easier understanding of622

whole adaptive process. This example demonstrates HF’s ability to capture sharp fronts by623

introducing new levels into a portion of the domain where it is needed. To demonstrate the624

potential of HF within CV-IGA we address the following classical benchmark 2-D problems:625

• Poisson equation626

• Heat conduction problem627

• Advection-dispersion problem628

Analytical solutions are available for all problems except advection-dispersion problem. All629

of the examples illustrate the ability of HF’s to efficiently and accurately describe different630

resolution scales.631

4.2. Verification tests632

4.2.1. Function approximation633

The selected test 2-D function is:634

f(x, y) = arctan
(

50
(
−0.25 +

√
x2 + y2

))
(57)635

with chosen numerical parameters at the zero level n = 1, m0
x = 10, m0

y = 10 and the636

domain defined as Ω = [0, 1]2. The error threshold is set as εs = 10−7, which implies that637

the residual (see Eq. (51)) between the Fup approximation and the given function (57)638

over all CVs at all resolution levels must be less than this prescribed threshold. Figure 10639

shows the evolution of the adaptive procedure using HF at five consecutive resolution levels640

starting with uniform Fup1(x, y) basis functions.641

27



Figure 10: CV-IGA approximation of the function (57). (a) HF approximations of the given function, (b)

the adaptive grid on different resolution levels where each color represents Fup basis function vertices on

different level.
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Function approximations of the given function (57) over all levels are shown in Figure642

10(1a-5a). The error measure between the numerical approximation and given function is643

residual which can be calculated as the integral difference between those two functions on all644

quarters of the CVs. Figure 10(1b-5b) shows active basis functions used for the numerical645

approximation and are represented by their vertices (each color represents one level, i.e.,646

active basis functions on that level). CVs are not directly shown but can be visualized with647

the help of the basis functions vertices, since every CVs edge is placed between the vertices648

of the adjacent functions (see Figure 8).649

The adaptive procedure is repeated until all residuals are less then the prescribed thresh-650

old. For given function (57) and adaptive threshold set as εs = 10−7, adaptive procedure651

needs five levels to approximate given problem, as shown in Figure 10. Note that fine CVs652

with a higher order of Fup basis functions are obtained only around the “well” edges de-653

scribing high solution frequencies. Moreover, in other regions the adaptive grid uses lower654

order of Fup basis functions and coarse CVs which helps in reducing the computational cost655

and increases efficiency.656

Figure 11: Convergence analysis obtained with uniform and adaptive Fupn basis functions for the function

approximation.

Figure 11 shows efficiency in terms of the L2 error norm as a function of the total657

degrees of freedom (DOFs) with slope representing the convergence rate (p) confirming that658

p = n + 1 is valid for uniform grid if n is the Fup order. Adaptive procedure just like in659

one-dimensional case [47] yields spectral convergence (solid line with filled circles), contrary660

to the THB splines which ensures polynomial convergence (p = n+1). Spectral convergence661
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enables that convergence rate is higher than p = n+1 if n is the Fup order used at the highest662

resolution level. Spectral convergence is achieved due to using hp-refinement when higher663

resolution levels not only use basis functions with smaller scales or higher frequencies, but664

also increased order of basis functions. This hp property causes that new levels and DOFs665

more drastically increase accuracy than it is case with THB splines where all levels use666

the same order of the basis functions. Figure 11 shows that convergence plot have larger667

slopes when new resolution levels and increased order of basis functions are introduced.668

Furthermore, adaptive procedure achieves a higher accuracy then the prescribed threshold669

(dashed line with empty circles, εA), thus proving the control of the numerical error. This670

means that the real numerical error of the function approximation is strictly less than the671

prescribed threshold.672

4.2.2. Poisson equation673

For 2-D Poissson benchmark problem, so called wavefront well problem is considered.674

It is commonly used example for testing adaptive refinement algorithms because of a steep675

wave front in the interior of the domain [7, 56, 57]. Parameters determine the steepness and676

location of the wave front. With the arctangent wave front that has exact solution that is677

similar to the function (57), there is a mild singularity at the center of the circle. However,678

for this test center of the circle is outside the domain, thus performance on the wave front679

is examined, not the singularity.680

Problem is defined in the form681

∇ · (−κ∇u(x, y)) = f(x, y), (x, y) ∈ Ω (58)682

with boundary conditions683

u(x, y) = uD(x, y), (x, y) ∈ ∂Ω (59)684

The numerical simulation domain is defined by a square area Ω = [0, 1]x[0, 1] where the685

boundaries are ΓD = ∂Ω and ΓN = ∅ (see Figure 12a). The exact analytical solution for the686

pressure field is given by:687

u(x, y) = arctan (α (r − r0)) where r =
√

(x− xc)2 + (y − yc)2 (60)688

where xc and yc represent center of the circular wave front, r0 is the distance from the wave689

front to the center of the circle, and α gives the steepness of the wave front.690

It should be noted that the right hand side f(x, y) is generated by taking the Laplacian691

(∇2) of the exact solution given in Equation (60). The exact solution depicted in Figure692
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Figure 12: Numerical solution domain and exact solution plot of the wave well problem defined by Eq. (58).

12b displays a “front”-type of behavior where the solution is rapidly changing across a693

circular band (a quarter of a circle) inside the domain. For the conductivity matrix κ694

only isotropic case is considered, and for simplicity in deriving the source function, the695

conductivity equivalent coefficient is set equal to696

κ =

[
1 0

0 1

]
(61)697

The adaptive simulation shown in Figures 13 and 14 is performed with starting poly-698

nomial degree n = 1. Number of basis functions on uniform level is defined as m0
x = 18,699

m0
y = 18, center of circular wave front is set at xc = yc = −0.05 with r0 = 0.7 and α = 100.700

The error threshold is set as εs = 1 · 10−4, which implies that the mass conservation error701

over all quarters CVs on every level must be less than this prescribed threshold.702

Figures 13 presents the absolute difference between the numerical and exact (see (60))703

solution while Figure 14 presents the adaptive grid on different resolution levels. With every704

new level, numerical solution becomes closer to the real solution (Figure 13 1a-6a). Even705

though, difference between numerical solution and exact solution is presented in Figure 13706

because exact solution is known, it was not the adaptive criteria used for testing like in707

approximating function (57). Here, adaptive criteria is used to check conservation error for708

each quarters of the particular i-th CV on the current resolution level. Quarters of the CVs709

are used because CV formulation exactly satisfies governing equation (i.e., the weak integral710

form of the conservation law), over each CV on the current resolution level. The adaptive711
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grid captures the front (see Figure 14) and repeats adaptive procedure until conservation712

error is less then the prescribed threshold at each quarter of the CVs. For given parameters713

and using HF, six levels are needed in order to find numerical solution that has conservation714

error less then prescribed error threshold on all quarters of the CVs.715

Figure 13: The absolute difference between the numerical and exact (60) solution on different resolution

levels (1-6).

The convergence analysis for the uniform and adaptive procedure is shown in Figure716

15. It depicts a demonstration of the efficiency in the terms of the L2 error norm as a717

function of DOF, and shows that the convergence rate for CV-IGA using the uniform grid718

is the optimal (p = n + 1) for odd and the suboptimal (p = n) for even order (n) of basis719

functions. G-IGA (Galerkin) yields the optimal convergence rate for the Poisson problem for720

all orders of Fup basis functions (i.e., p = n+1), while C-IGA (collocation) yields suboptimal721

convergence rates of p = n − 1 for odd basis functions and p = n for even basis functions722

[50, 16]. The adaptive procedure for this diffusive-like boundary value problem exhibits723

spectral convergence (black solid line with filled triangles), just like in one-dimensional case724

[47].725
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Figure 14: The adaptive grid on different resolution levels, (1) first, (2) second, ..., (6) sixth level. Each

color represents Fup basis function vertices on different level.

Figure 15: Convergence analysis of the wave front problem given in the form (58) for the uniform and

adaptive procedure.
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4.2.3. Heat equation (Laplace)726

In this part, results obtained with adaptive algorithm on problems with irregular geom-727

etry are presented. Considering stationary heat conduction problem728

∆u = 0 (62)729

on an L-shaped domain Ω = [−1, 1]2 \ [0, 1]2, see Figure 16a), with boundary conditions730

u = 0 on ΓD (63)731

732

∂u

∂n
= qN on ΓN (64)733

such that the exact solution is given by734

u = r2/3 sin

(
2θ − π

3

)
(65)735

in polar coordinates (r, θ), where r2 = x2 + y2 and θ = arctan (y/x). The expression for736

the Neumann boundary condition qN is derived based on the exact solution (65). For the737

given elliptic problem, the re-entrant corner at (0, 0) in the domain causes a singularity in738

the solution. An optimal convergence rate is not obtained when uniform mesh refinement is739

performed for the problems where the solution is not sufficiently smooth [21].740

Figure 16: The L-shape problem: a) Numerical solution domain with boundary conditions and b) exact

solution plot.

Presented HF procedure starts with m0
x = 18, m0

y = 18 Fup basis functions on the first741

(uniform) resolution level. The error threshold is set as εs = 9 · 10−3, which implies that the742
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mass conservation error over all quarters CVs on every level must be less then this prescribed743

threshold. The exact solution of the presented problem is shown in Figure 16b.744

L-shaped domain is discretized by two patches, as shown in Figure 17b, while Figure 17a745

shows control points for the coarse mesh.746

Figure 17: The L-shape problem: a) Fup discretized geometry with a ncp = 25 number of control points per

each element, and b) for nel = 2 number of patches. In a) red circles represent the control points, whereas

the shaded region is the modeled geometry.

Figure 18 presents the numerical solution for the stationary heat conduction problem747

in two-dimensional domain. The area of interest is detected and resolved locally using HF748

basis functions (see Figure 18). Refinement captures the re-entrant corner in the domain749

at (0, 0) where a singularity in the solution occurs. For given parameters and using HF, six750

levels are needed in order to find numerical solution that has conservation error less then751

prescribed error threshold on all quarters of the CVs.752

The convergence analysis is performed using L2 norm and is plotted in Figure 19 for753

uniform Fup1, Fup2 and HF basis functions. It can be observed that adaptive HF basis754

functions again improves the convergence rate in comparison to the uniform layout. More-755

over, uniform grids shows a significantly reduced convergence rate (p = 0.3) due to the756

re-entrant corner at (0, 0) in the domain (singularity). The present numerical example thus757

confirms that adaptive algorithm significantly improves solution for rough problems still en-758

abling spectral convergence. Convergence rate by parts is equal to unifom grid if new levels759

are not introduced. When new levels are introduced around singular corner, convergence760

rate exhibits spectral character. Overall, convergence is still spectral due to hp-refinement761

properties of the proposed method.762
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Figure 18: Numerical solution of the stationary heat conduction problem defined over an L-shaped domain

(governed by Laplace equation (62)) at different resolution levels; (1a-6a) HF approximations; (1b-6b)

corresponding adaptive spatial grids.

Figure 19: Convergence analysis for uniform and adaptive method for the L-shape problem.
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4.2.4. Advection-dispersion equation763

Steady-state discontinuous example764

Two-dimensional benchmark example is taken from [12, 15, 23] which consists of solving765

the advection-dispersion equation766

D∆u− v · ∇u = 0 (66)767

on the unit-square with discontinuous Dirichlet boundary conditions (see Figure 20). The768

dispersion D coefficient is chosen extremely small (D = 8 · 10−4) compared to the advection769

velocity v = (sin θ, cos θ)T , thus very sharp layers are considered. Sharp interior and bound-770

ary layers require stable numerical techniques as well as adaptive solutions in order to capture771

all resolution scales. Adaptation with hierarchical Fup basis functions (hp-refinement) gives772

very accurate numerical results, but still needs large number of basis functions (unlike uni-773

form basis layout), so SUPG stabilization [58] is employed as additional mechanism inside774

the adaptive procedure.775

Adaptive resolution of the internal and boundary layers are investigated with the pre-776

sented HF procedure starting from m0
x = 18, m0

y = 18 Fup basis functions on the first777

(uniform) resolution level. The error threshold is set as εs = 1 · 10−4. The exact solution of778

the presented problem is not known.779

Figure 20: Domain with discontinuous Dirichlet boundary conditions for the Advection-dispersion problem.

Firstly, Figure 21 presents the evolution of the sharp boundary layer and correspond-780

ing adaptive spatial grids at five consecutive resolution levels in two-dimensional domain781
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without stabilization. It can be observed that the refinement captures the location of the782

internal and the boundary layers very well. Despite the high Peclet number no stability or783

robustness issues in the adaptive algorithm were encountered. There are some under- and784

overshooting of the first (uniform) level along the internal layer. These nonphysical oscilla-785

tions are a result of the discretization of the first order spatial derivative in the advective786

term when this term dominates the other terms in the governing equation. Moreover, five787

adaptive HF refinement levels are required to get control over the undershooting close to788

the jump at the inflow boundary. Mass conservation error detects the internal layer as well789

as the boundary layer. However, the refined levels are not placed only around the boundary790

layer and the internal layer, solely because adaptive algorithm just like in one-dimensional791

case [47] requires stabilization process to efficiently solve this advection dominated problem792

(see Figure 22). It is more relevant to apply stabilization only to the first few levels (in793

this case, for the first three levels, l = 1, 2, 3) because the Peclet number is higher at the794

initial resolution levels. Figure 22 presents the evolution of the numerical solution and cor-795

responding adaptive spatial grids at four consecutive resolution levels with the stabilization796

method applied to the adaptive algorithm. Comparing grids with (Figure 22) and without797

(Figure 21) stabilization, methodology which uses stabilization yields significant improve-798

ment. Moreover, the computational cost is reduced since fewer basis functions are needed799

on higher levels to achieve the same mass conservation error on all quarters of the CVs.800

Figure 23 presents the convergence analysis of the adaptive algorithm using HF basis801

functions, with respect to the degrees of freedom used to achieve a certain accuracy. Since802

previous problem had reduced convergence rate for uniform test due to the singularity, in this803

test we skipped uniform analysis since problem has discontinuity within Dirichlet boundary804

conditions. As expected, HF adaptive algorithm achieves spectral convergence rate which805

is quite impressive for these type of problems. Note that previous authors did not present806

convergence plot for this ADE benchmark using THB.807

Space-time advection-dispersion problem808

This section describes the mixing of transport processes in the space-time domain, for in-809

stance in porous media [54]. Advection-dispersion process can be described by the following810

equation, in the form:811

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
− v∂C(x, t)

∂x
(67)812

with appropriate initial and boundary conditions:813

C(x, 0) = 0 (68)814

38



Figure 21: Numerical solution of the ADE (66) at different resolution levels (without stabilization); (1a-5a)

HF approximations; (1b-5b) corresponding adaptive spatial grids.
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Figure 22: Numerical solution of the ADE (66) with stabilization procedure at different resolution levels:

corresponding adaptive spatial grids at the (1) first, (2) second, (3) third and (4) fourth level.

815

C(0, t) = C0;
∂C(2, t)

∂x
= 0 (69)816

where C represents the dependent variable (concentration [M/L3]), while D is the dispersion817

coefficient and v is the transport velocity in the x direction.818

The domain, dispersion, velocity and threshold are defined by: L = 2m; D = 10−5,819

v = 10−3, ε = 5 · 10−4. The initial condition (see Eq. (68)) shows that initially the domain820

was occupied by fresh water (C = 0). However, the left boundary consists of denser fluid (for821

example the salt source) that continuously flows into the domain, and the right boundary822

states that there is no dispersion flux through that boundary.823

Figure 24a shows the numerical solution in the x-t domain obtained with space-time HF824

basis functions. It represents the change in the solute concentration over the space and time.825

This change occurs in a narrow transition zone (see Figure 24). Figure 24b shows an adaptive826

grids in the space-time domain. In initial stages of the process, a fine CVs with higher order827

of Fup basis functions are needed due to very challenging initial conditions and the creation828

of a very sharp discontinuous concentration front. It should be noted that time domain829

is considered as one global time step. Furthermore, the initial error does not propagate830
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Figure 23: Convergence analysis for adaptive method of steady state advection dispersion problem (66).

further over time because proposed adaptive method converts the boundary-initial problem831

to a quasi-boundary problem controlling the global temporal/spatial error.832

Figure 25 presents corresponding adaptive spatial grids at four consecutive resolution833

levels with the stabilization method. For two-dimensional cases, the idea of implement-834

ing stabilization method of upwinding can not be easily applied. Various methods have835

been proposed to implement the basic idea of upwinding to 2-D analyses. Here, upwinding836

method adjusting for 2-D analyses with control volume procedure is used [59]. Moreover,837

the computational cost is reduced since fewer basis functions and levels (Figure 24 vs Figure838

25) are needed to achieve the same mass conservation error on all quarters of the CVs.839

Figure 26 shows convergence analysis using L2 norm. Uniform analysis is skipped since840

presented problem has singularity due to discontinuity of boundary conditions, thus only841

adaptive algorithm without stabilization is tested. It can be observed that adaptive HF basis842

functions achieves spectral convergence rate. This example is used to show how adaptive843

grid handles moving fronts and have the ability to change the grid dynamically, following a844

front during the simulation while keeping the spectral convergence rate.845

5. Conclusions846

This paper presents the development of new 2-D hierarchical Fup (HF) basis functions847

that enable local hp-improvement inside adaptive control volume isogeometric analysis (CV-848

IGA). HF provides spectral convergence and presents a substantial improvement in compar-849

ison to THB that enable polynomial convergence. Hierarchical Fup basis functions do not850
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Figure 24: Numerical solution of the ADE (67) at different resolution levels; (1a-5a) HF approximation

(without stabilization), (1b-5b) corresponding adaptive time-spatial grids.
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Figure 25: Corresponding adaptive time-spatial grids at different resolution levels of the ADE (67) (with

stabilization).

Figure 26: Convergence analysis for adaptive method (without stabilization)
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require additional modifications to preserve the essential property of partition of unity that851

allow easy implementation of local hp-enhancements. Control volume formulation is simple,852

all control volumes are regular in the parametric space (also related to the Greville colloca-853

tion points), only overlapping is needed in the zones of contact between different resolution854

levels.855

The developed adaptive algorithm is presented first on a simple example of function856

approximation for the sake of simplicity of the presented adaptive algorithm, then to the857

application of the Poisson equation, which has wide implementation in structural and fluid858

mechanics. On the example of ADE, we show that even in cases when the advective member859

dominates and creates oscillations in solving using adaptive techniques, we achieve stability860

and accurate solutions. Even in non-smooth problems, spectral convergence is achieved con-861

trary to the application of uniform grid. CV-IGA ensures local and global mass conservation862

which is potentially very important for fluid mechanics problems.863
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[39] V. Kozulić, Numerical modelling by the fragment method with Rbf functions (In Croatian). PhD thesis,969

1999.970
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