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1 Faculty of Civil Engineering, Architecture and Geodesy, University of Split,
Matice hrvatske 15, 21000 Split, Croatia, grgo.kamber@gradst.hr
2 Faculty of Civil Engineering, Architecture and Geodesy, University of Split,
Matice hrvatske 15, 21000 Split, Croatia, hrvoje.gotovac@gradst.hr
3 Faculty of Civil Engineering, Architecture and Geodesy, University of Split,
Matice hrvatske 15, 21000 Split, Croatia, vedrana.kozulic@gradst.hr

1. Introduction

In this paper, a novel adaptive algorithm that is based on Fup basis functions [1, 2] that belong to the
class of atomic functions and can be regarded as infinitely differentiable splines [3], is presented. Hi-
erarchical Fup (HF) basis functions are closely related to the hierarchical B-splines (HB) and truncated
hierarchical B-splines (THB). HF have the option of local hp-refinement such that they can replace cer-
tain basis functions at one resolution level with new basis functions at the next resolution level that have
higher order (p-refinement) but also a smaller length of the compact support (h-refinement). This feature
provides spectral convergence [4] and presents a substantial improvement in comparison to THB that en-
able polynomial convergence. HF basis functions are implemented into control volume IGA (CV-IGA)
formulation. Poisson’s equation is used for verification test.

2. Methodology

Fup basis functions belong to the class of atomic functions (see [1,3]) and span vector space of algebraic
polynomials, while their properties are closely related to the more known B-splines.
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Figure 1a shows a basis function Fupl
1 defined on a knot vector Ξl = {0,1,2,3}, and Figure 1b shows
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Figure 1: Refinability of a Fup1(ξ) basis function. (a) Fupl
1(ξ) is defined on the knot vector Ξl =

{0,1,2,3}; and (b) Fupl+1
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0,1,2. According to Eq. (1), Fupl
1 (Figure 1b - black dashed curve) can be represented by a weighted

summation of its three children Fupl+1
2 (Figure 1b - red solid curve). In contrast to THB, hierarchical Fup

basis functions (HF) enable hp-adaptive methods because each next resolution level not only decreases
compact support but also increases the order of the basis functions (hp-refinement). Multidimensional
Fup basis functions are obtained as tensor products of the one-dimensional basis functions defined for
each coordinate direction.

To derive CV-IGA, the 2D parameter space defined by uniform (open) knot vector is shown on Figure
2. Domain is subdivided into a set of CVs such that each CV surrounds one corresponding vertex (Figure
2 - black circles) of basis functions and CVs boundary is defined at half distance between neighboring
vertices.

In Figure 2, the focus is on the grid point Vi, j (represents vertex), which has the grid points Vl , Vr, Vu

and Vd as its neighbors and CVi, j boundaries (Figure 2 - red line) are marked as Γi, j,l,Γi, j,r,Γi, j,d ,Γi, j,u.

Figure 2: Control volume scheme for two-dimensional case.

Figure 3 shows a nested sequence of CVs domain, together with the corresponding vertices for each
resolution level l, where each CV is linked with only one vertices i.e., the number of basis functions
corresponds to the number of CVs.

CVs on the higher level (l ≥ 1) are build in a slightly different way then on starting level where
all CVs are nonoverlapping. Each CVs boundary on the higher level (see Figure 3) are positioned ex-
actly half the length of the characteristic intervals ∆ξ, ∆η from the corresponding Fup basis function
vertex, thus higher levels (CVs) are overlapping with lower levels (CVs). Overlapping process makes
this algorithm even more robust, but at the cost of more expensive numerical integration.
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Figure 3: A nested sequence of CV domains for the construction of the Fup hierarchy according to
relation Ωl ⊇Ωl+1 for l = 0,1,2 for two-dimensional case.

3. Numerical example

Poissson equation, so called wavefront well problem is considered for verification test. It is commonly
used example for testing adaptive refinement algorithms because of a steep wave front in the interior of
the domain [5–7]. Parameters determine the steepness and location of the wave front.

Problem is defined in the form

∇ · (−κ∇u(x,y)) = f (x,y) (x,y) ∈Ω (4)

with boundary conditions
u(x,y) = uD(x,y) (x,y) ∈ ∂Ω (5)

The numerical simulation domain is defined by a square area Ω = [0,1]x[0,1] where the boundaries
are ΓD = ∂Ω and ΓN = /0 (see Figure 4a). The exact analytical solution for the pressure field is given by:

u(x,y) = arctan(α(r− r0)) where r =
√
(x− xc)2 +(y− yc)2 (6)

where xc and yc represents center of the circular wave front, r0 is the distance from the wave front to the
center of the circle, and α gives the steepness of the wave front.

Figure 4: Numerical domain and exact solution plot of the wave well problem defined by Eq. (4)

Figure 5 presents the numerical solution of the wave front given by Eq. (4). Numerical solution
becomes closer to the real solution (see Figure 5 1b-6b) with every new level. Adaptive criteria is used
to check conservation error for each quarters of the particular i-th CV on the current resolution level.
Quarters of the CVs are used because CV formulation exactly satisfies governing equation (i.e., the weak
integral form of the conservation law), over each CV on the current resolution level. Adaptive procedure
is repeated until conservation error is less then the prescribed threshold at each quarter of the CVs. The
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adaptive grid captures the front (see Figure 5 1c-6c). For given parameters xc = yc = −0.05, r0 = 0.7
and α = 100 and using HF, six levels are needed in order to find numerical solution that has conservation
error less then prescribed error threshold (εs = 1 ·10−4) on all quarters of the CVs.

Figure 5: Numerical solution of the wave front well problem defined by Eq. (4). (a) HF approximation,
(b) the absolute difference between the numerical and exact solution and (c) the adaptive grid on different
resolution levels where each color represents Fup basis function vertices on different level.

4. Conclusions

A novel adaptive algorithm based on hierarchical Fup (HF) basis functions and the control volume IGA
formulation is presented. Fup basis functions (infinitely differentiable splines) belong to the class of
atomic functions and have the option of local hp-refinement. The application of hierarchical Fup ba-
sis functions enables higher continuity and smoothness of the solution, and at the same time, provides
spectral convergence, while control volume formulation retains the conservation property of governing
equations.
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